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Abstract

In this study, we develop an approximate analytic method for solving 1D dual-phase-lagging heat conduction

equations, which are derived based on the original dual-phase-lagging model without the first-order Taylor series

approximation. The approximate analytic solution is obtained by employing the method of separation of variables. The

coefficients of the series solution are then approximated by polynomials. The numerical method is illustrated with two

simple examples. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Heat transport through thin films is of vital impor-

tance in microtechnology applications [1,2]. Thin films

of metals, of dielectrics such as SiO2 or Si semiconduc-

tors are important components of microelectronic de-

vices. Reducing the device size to microscale enhances

the switching speed of the device. Size reduction, how-

ever, increases the rate of heat generation which leads to

a high thermal load on the microdevice. Heat transfer at

the microscale is also important for the processing of

materials with a pulsed-laser [3,4]. Examples in metal

processing are laser micromachining, laser patterning,

laser processing of diamond films from carbon ion im-

planted copper substrates, and laser surface hardening.

Hence, studying the thermal behavior of thin films is

essential for predicting the performance of a microelec-

tronic device or for obtaining the desired microstructure

[2]. A dual-phase-lagging model has been used for

studying the lagging response in conductive heat transfer

at the microscale. The lagging response describes the

heat flux vector and the temperature gradient occurring

at different instants of time in the heat transfer process.

The original dual-phase-lagging heat transport equa-

tions are expressed as [5]:

�r �~qqþ Q ¼ qCp
oT
ot

; ð1Þ

~qqðx; y; z; t þ sqÞ ¼ �krT ðx; y; z; t þ sTÞ; ð2Þ

where~qq ¼ ðq1; q2; q3Þ is heat flux , T is temperature, k is
conductivity, Cp is specific heat, q is density, Q is a heat
source, sq and sT are positive constants, which are the
time lags of the heat flux and temperature gradient, re-

spectively. In the classical theory of diffusion, the heat

flux vector (~qq) and the temperature gradient (rT ) across
a material volume are assumed to occur at the same

instant of time. They satisfy the Fourier’s law of heat

conduction

~qqðx; y; z; tÞ ¼ �krT ðx; y; z; tÞ: ð3Þ

As Tzou [5] pointed out, the thermal lagging describes

the fast-transient effect of thermal inertia. The finite time

required for the energy exchange/thermal activation in

microscale resides in the phase lag of the temperature

gradient. It also describes the microstructural inter-

action effect in space in terms of the resulting delayed

response in time.Using Taylor series expansion, the first-

order approximation of Eq. (2) gives [5]

~qqþ sq
o~qq
ot

¼ �k rT
�

þ sT
o

ot
rT½ 	

�
: ð4Þ
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Analytic and numerical methods for solving the above

coupled Eqs. (1) and (4) have been widely studied [5–21].

Among these, Tzou and Ozisik [5,6] considered Eqs. (1)

and (4) in 1D and eliminated the heat flux~qq to obtain a
heat transport equation as follows:

A
oT
ot

þ D
o2T
ot2

¼ o2T
ox2

þ B
o3T
ox2ot

þ S; ð5Þ

where A ¼ ðqCpÞ=k, B ¼ sT, D ¼ ðsqqCpÞ=k, and

S ¼ 1=kðQþ sqðoQÞ=ðotÞÞ. They studied the lagging be-
havior by solving the above heat transport Eq. (5)

without body heating in a semiinfinite interval, ½0;þ1Þ.
The solution was obtained by using the Laplace trans-

form method and the Riemann-sum approximation for

the inversion [8]. Wang et al. [9,10] developed methods

of measuring the phase lags of the heat flux and the

temperature gradient and obtained analytical solutions

for 1D, 2D and 3D heat conduction domains under es-

sentially arbitrary initial and boundary conditions. The

solution structure theorems were also developed for

both mixed and Cauchy problems of dual-phase-lagging

heat conduction equations. Tang and Araki [12] derived

the analytic solution in finite rigid slabs by using the

Green’s function method and a finite integral transform

technique. Lin et al. [13] obtained the analytic solution

using the Fourier series. Al-Nimr and Arpaci [14] pro-

posed a new approach, based on the physical decoupling

of the hyperbolic two-step model, to describe the ther-

mal behavior of a thin metal film exposed to picoseconds

thermal pulses. Chen and Beraun [15] employed the

corrective smoothed particle method to obtain a nu-

merical solution of ultrashort laser pulse interactions

with metal films. Dai and Nassar [16] developed a two-

level finite difference scheme of the Crank–Nicholson

type by introducing an intermediate function for solving

Eq. (5) in a finite interval. It is shown by the discrete

energy method that the scheme is unconditionally stable.

The scheme has been generalized to a 3D rectangular

thin film case where the thickness is at the sub-micro-

scale [17]. Further, Dai and Nassar [18,19] developed

high-order compact finite difference schemes for solving

Eqs. (5) and (4) in a 3D thin film, respectively. Dai and

Nassar also developed several numerical methods for

solving the coupled Eqs. (1) and (4) in double-layered

thin films [20,21].

Since Eq. (4) is only a first-order Taylor series ap-

proximation of Eq. (2), it may not be a good represen-

tation of the original dual-phase-lagging equation, Eq.

(2). Further, the higher-order Taylor series approxima-

tion of Eq. (2) may result in higher-order derivatives,

which may be difficult to solve both analytically and

numerically. Therefore, it is useful to study thermal

behavior based on the original coupled Eqs. (1) and (2).

Through this, one can study the high-order effect in sq
and sT. In this paper, we will develop an approximate
analytic method for solving 1D dual-phase-lagging heat

transport equations.

2. Approximate analytic method

We first consider the coupled dual-phase-lagging heat

conduction equations (Eqs. (1) and (2)) without the heat

source in 1D

� oq
ox

¼ qCp
oT
ot

ð6Þ

and

qðx; t þ sqÞ ¼ �k
oT
ox

ðx; t þ sTÞ: ð7Þ

Eliminating q, we obtain a 1D dual-phase-lagging heat

conduction equation as follows:

oT ðx; t þ sqÞ
ot

¼ a
o2T ðx; t þ sTÞ

ox2
; ð8Þ

where a ¼ k=ðqCpÞ. The initial and boundary conditions
are assumed to be

T ðx; 0Þ ¼ uðxÞ ð9Þ

Nomenclature

a constant ¼ ðk=qCpÞ
Ci coefficient in Taylor series of

CðtÞ
Cp specific heat

k conductivity

l length of the considered

interval

M ; n integers

Q heat source

~qq ¼ ðq1; q2; q3Þ heat flux

T temperature

t time

x; y; z Cartesian coordinates

Greek symbols

b constant ¼ ð�aknÞ
C coefficient in Fourier series of

T ðx; tÞ
kn constant ¼ ððnp=lÞ2Þ
U coefficient in Fourier series of the

source term Sðx; tÞ
q density

sq time lag of heat flux

sT time lag of temperature gradient
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and

T ð0; tÞ ¼ T ðl; tÞ ¼ 0: ð10Þ

Assume that the solution of the above problem exists

and is smooth. To solve the above problem, we first

employ the method of separation of variables. Letting

T ðx; tÞ ¼ CðtÞX ðxÞ and substituting it into Eq. (8), we
obtain

C0ðt þ sqÞX ðxÞ ¼ aCðt þ sTÞX 00ðxÞ:

Separating variables x and t, we have

C0ðt þ sqÞ
aCðt þ sTÞ

¼ X 00ðxÞ
X ðxÞ ¼ �k;

where k is a constant. Thus, the problem, Eqs. (8)–(10),
can be separated into solving two different ordinary

equations as follows:

X 00ðxÞ þ kX ðxÞ ¼ 0; X ð0Þ ¼ X ðlÞ ¼ 0 ð11Þ
and

C0ðt þ sqÞ ¼ �akCðt þ sTÞ: ð12Þ

It is readily seen that the solution of Eq. (11) is

XnðxÞ ¼ sin
npx
l

; kn ¼
np
l

� �2
; n ¼ 1; 2; 3; . . . ð13Þ

Hence, Eq. (12) becomes

C0
nðt þ sqÞ ¼ �aknCnðt þ sTÞ;

Cnð0Þ ¼
2

l

Z l

0

uðxÞ sin npx
l
dx; n ¼ 1; 2; . . .

ð14Þ

Once Eq. (14) is solved, the analytic solution of the

problem, Eqs. (8)–(10), can be written as follows:

T ðx; tÞ ¼
X1
n¼1

CnðtÞ sin
npx
l

: ð15Þ

The remaining question is how to find the solution of

Eq. (14). It is noted that Eq. (14) is difficult to solve

analytically, because sq and sT are different values. To
overcome this difficulty, we develop an approximate

analytic method, in which CnðtÞ is approximated by a
polynomial. Once CnðtÞ is obtained, then the solution
T ðx; tÞ is obtained from Eq. (15). To this end, we first

rewrite Eq. (14) without the index n for convenience

C0ðt þ sqÞ ¼ bCðt þ sTÞ; ð16Þ

where b is a constant. Let

CðtÞ ¼
XM
i¼0

Citi; ð17Þ

where M could be a large integer and C0 ¼ Cð0Þ. Sub-
stituting Eq. (17) into Eq. (16) gives

XM
i¼1

Ciiðt þ sqÞi�1 ¼ b
XM
i¼0

Ciðt þ sTÞi: ð18Þ

Case 1. If sT P sq, we let t ¼ �sq in Eq. (18) and obtain

C1 ¼ b
XM
i¼0

CiðsT � sqÞi:

Differentiating Eq. (18) with respect to t and letting

t ¼ �sq give

XM
i¼2

Ciiði� 1Þðt þ sqÞi�2 ¼ b
XM
i¼1

Ciiðt þ sTÞi�1 ð19Þ

and

2!C2 ¼ b
XM
i¼1

CiiðsT � sqÞi�1:

Continuously, differentiating Eq. (19) with respect to t

and letting t ¼ �sq give

XM
i¼3

Ciiði� 1Þði� 2Þðt þ sqÞi�3

¼ b
XM
i¼2

Ciiði� 1Þðt þ sTÞi�2 ð20Þ

and

3!C3 ¼ b
XM
i¼2

Ciiði� 1ÞðsT � sqÞi�2:

In general, we have

k!Ck ¼ b
XM
i¼k�1

Ciiði� 1Þ � � � ði� k þ 2ÞðsT � sqÞi�kþ1
;

k ¼ 1; . . . ;M :

ð21Þ

We now solve the coefficients Ck , k ¼ 1; . . . ;M , from Eq.
(21). Letting k ¼ M , we obtain from Eq. (21)

M !CM ¼ b½M !ðsT � sqÞCM þ ðM � 1Þ!CM�1	:

Hence,

CM ¼ aM�1

M
CM�1; aM�1 ¼

b
1� bðsT � sqÞ

:

Letting k ¼ M � 1, we obtain

ðM � 1Þ!CM�1

¼ b
XM

i¼M�2
Ciiði� 1Þ � � � ði�M þ 3ÞðsT � sqÞi�Mþ2

¼ b
M !

2!
ðsT

�
� sqÞ2CM þ ðM � 1Þ!ðsT � sqÞCM�1

þ ðM � 2Þ!CM�2

�

¼ b
ðM � 1Þ!
2!

aM�1ðsT
�

� sqÞ2CM�1

þ ðM � 1Þ!ðsT � sqÞCM�1 þ ðM � 2Þ!CM�2

�
:

W. Dai, R. Nassar / International Journal of Heat and Mass Transfer 45 (2002) 1585–1593 1587



Hence,

CM�1 ¼
aM�2

M � 1CM�2;

aM�2 ¼
b

1� bðsT � sqÞ � b aM�1
2!

ðsT � sqÞ2
:

Again, letting k ¼ M � 2, we obtain

ðM�2Þ!CM�2¼ b
XM

i¼M�3
Ciiði�1Þ� � �ði�Mþ4ÞðsT� sqÞi�Mþ3

¼ b
M !

3!
ðsT

�
� sqÞ3CM þðM�1Þ!

2!
ðsT� sqÞ2CM�1

þðM�2Þ!ðsT� sqÞCM�2þðM �3Þ!CM�3

�
:

Replacing CM by CM�1 and then CM�1 by CM�2 based on

the previous equations, we obtain

CM�2 ¼
aM�3

M � 2CM�3;

where

aM�3

¼ b

1� bðsT � sqÞ � b aM�2
2!

ðsT � sqÞ2 � b aM�1aM�2
3!

ðsT � sqÞ3
:

In general, we have

aM�k ¼
b

1� bðsT � sqÞ � b
Pk

i¼2
1
i! ðsT � sqÞi

Qi�1
j¼1 aM�kþj

;

k ¼ 2; . . . ;M
ð22Þ

and

CM�kþ1 ¼
aM�k

M � k þ 1CM�k ; C0 ¼ Cð0Þ;

k ¼ M ; . . . ; 1;
ð23Þ

where

aM�1 ¼
b

1� bðsT � sqÞ
: ð24Þ

Case 2. If sT < sq, we let t ¼ �sT in Eq. (18) and obtain

XM
i¼1

Ciiðsq � sTÞi�1 ¼ bC0:

Differentiating Eq. (18) with respect to t and letting

t ¼ �sT give

XM
i¼2

Ciiði� 1Þðt þ sqÞi�2 ¼ b
XM
i¼1

Ciiðt þ sTÞi�1 ð25Þ

and

XM
i¼2

Ciiði� 1Þðsq � sTÞi�2 ¼ bC1:

Again, differentiating Eq. (25) with respect to t and

letting t ¼ �sT give

XM
i¼3

Ciiði�1Þði�2Þðtþ sqÞi�3¼ b
XM
i¼2

Ciiði�1Þðtþ sTÞi�2

and

XM
i¼3

Ciiði� 1Þði� 2Þðt þ sqÞi�3 ¼ 2!bC2:

In general, we have

bk!Ck ¼
XM
i¼kþ1

Ciiði� 1Þ � � � ði� kÞðsq � sTÞi�k�1
;

k ¼ 0; . . . ;M � 1:
ð26Þ

We then solve the coefficients Ck , k ¼ 1; . . . ;M ; from Eq.
(26). Letting k ¼ M � 1, we obtain from Eq. (26)

bðM � 1Þ!CM�1 ¼ M !CM :

Hence,

CM ¼ aM�1

M
CM�1; aM�1 ¼ b:

Letting k ¼ M � 2, we obtain

bðM�2Þ!CM�2¼
XM

i¼M�1
Ciiði�1Þ � � �ði�Mþ2Þðsq� sTÞi�Mþ1

¼M !ðsq� sTÞCM þðM �1Þ!CM�1

¼ðM �1Þ!aM�1ðsq� sTÞCM�1þðM�1Þ!CM�1:

Hence,

CM�1 ¼
aM�2

M � 1CM�2; aM�2 ¼
b

1þ aM�1ðsq � sTÞ
:

Again, letting k ¼ M � 3, we obtain

bðM�3Þ!CM�3¼
XM

i¼M�2
Ciiði�1Þ � � �ði�Mþ3Þðsq� sTÞi�Mþ2

¼M !

2!
ðsq� sTÞ2CM þðM�1Þ!ðsq� sTÞCM�1

þðM�2Þ!CM�2:

Replacing CM by CM�1 and then CM�1 by CM�2 based on

the previous equations, we obtain

CM�2 ¼
aM�3

M � 2CM�3;

where

aM�3 ¼
b

1þ aM�2ðsq � sTÞ þ aM�1aM�2
2!

ðsq � sTÞ2
:
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In general, we obtain

aM�k ¼
b

1þ
Pk�1

i¼1
1
i! ðsq � sTÞi

Qi
j¼1 aM�kþj

;

k ¼ 1; . . . ;M
ð27Þ

and

CM�kþ1 ¼
aM�k

M � k þ 1CM�k ; C0 ¼ Cð0Þ;

k ¼ M ; . . . ; 1:
ð28Þ

Once Ck is obtained, CðtÞ ¼
PM

i¼0 Citi. Finally, one
can obtain CnðtÞ for each n based on the above method

(i.e., CnðtÞ ¼
PM

i¼0 C
n
i t

i), and hence the approximate an-

alytic solution for Eqs. (8)–(10) can be written as fol-

lows:

T ðx; tÞ ¼
X1
n¼1

CnðtÞ sin
npx
l

; ð29Þ

where

CnðtÞ ¼
XM
i¼0

Cn
i t

i: ð30Þ

It should be pointed out that the above approximate

solution satisfies exactly the following initial conditions:

T ðx; 0Þ ¼ uðxÞ; okT ðx; 0Þ
otk

¼ 0 ðk ¼ M þ 1;M þ 2; . . .Þ

and

if sT P sq;
okT ðx; 0Þ

otk
¼ b

ok�1T ðx; sT � sqÞ
otk�1

ðk ¼ 1; 2; . . . ;MÞ

if sT6 sq;
okT ðx; sT � sqÞ

otk
¼ b

ok�1T ðx; 0Þ
otk�1

ðk ¼ 1; 2; . . . ;MÞ:

Further, the convergence in the series, Eq. (29), needs to

be further studied mathematically.

We now generalize the above idea to develop an

approximate analytic solution for the coupled dual-

phase-lagging heat conduction equations (Eqs. (1) and

(2)) in 1D, where the heat source Qðx; tÞ is included

� oqðx; tÞ
ox

þ Qðx; tÞ ¼ qCp
oT ðx; tÞ

ot
ð31Þ

and

qðx; t þ sqÞ ¼ �k
oT
ox

ðx; t þ sTÞ: ð32Þ

Assume that q; Cp, and k are constants. We eliminate q
in Eqs. (31) and (32) to obtain a 1D dual-phase-lagging

heat conduction equation with a heat source as follows:

oT ðx; t þ sqÞ
ot

¼ a
o2T ðx; t þ sTÞ

ox2
þ Sðx; t þ sqÞ; ð33Þ

where a ¼ k=ðqCpÞ and Sðx; tÞ ¼ 1=ðqCpÞQðx; tÞ: The
initial and boundary conditions are assumed to be

T ðx; 0Þ ¼ uðxÞ ð34Þ

and

T ð0; tÞ ¼ T ðl; tÞ ¼ 0: ð35Þ

We assume that the solution of the above problem exists

and is smooth. To solve the above problem, we first

employ the method of separation of variables and let

T ðx; tÞ ¼
X1
n¼1

CnðtÞ sin
npx
l

ð36Þ

and

Sðx; tÞ ¼
X1
n¼1

UnðtÞ sin
npx
l

: ð37Þ

Substituting Eqs. (36) and (37) into Eq. (33) gives

C0
nðt þ sqÞ ¼ �aknCnðt þ sTÞ þ Unðt þ sqÞ; ð38Þ

where kn ¼ ðnp=lÞ2 and

Cnð0Þ ¼
2

l

Z l

0

uðxÞ sin npx
l
dx; n ¼ 1; 2; . . . ð39Þ

To find an approximate analytic solution, we first re-

write Eq. (38) without the index n for convenience

C0ðt þ sqÞ ¼ bCðt þ sTÞ þ Uðt þ sqÞ; ð40Þ

where b ¼ �akn. Let

CðtÞ ¼
XM
i¼0

Citi; ð41Þ

where M could be a large integer and C0 ¼ Cð0Þ: Sub-
stituting Eq. (41) into Eq. (40) gives

XM
i¼1

Ciiðt þ sqÞi�1 ¼ b
XM
i¼0

Ciðt þ sTÞi þ Uðt þ sqÞ: ð42Þ

Using a similar argument as described in the previous

problem, we obtain two results as follows.

Case 1. If sT P sq, then

aM�k ¼ ðM � kþ 1ÞaM�kþ1

b
�MðM � 1Þ � � �

� ðM � kþ 1Þ ðsT � sqÞk

k!

�
Xk�1
i¼1

ðM � kþ 1Þ � � � ðM � kþ iÞaM�kþi
ðsT � sqÞi

i!
;

ð43Þ

bM�k ¼ ðM � k þ 1Þ bM�kþ1

b
� UðM�kÞð0Þ

bðM � kÞ!

�
Xk�1
i¼1

ðM � k þ 1Þ � � � ðM � k þ iÞbM�kþi
ðsT � sqÞi

i!

ð44Þ
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and

CM�k ¼ aM�kCM þ bM�k ; C0 ¼ Cð0Þ;
k ¼ 2; . . . ;M ;

ð45Þ

where

aM�1 ¼ M
1� bðsT � sqÞ

b
; bM�1 ¼ � UðM�1Þð0Þ

bðM � 1Þ! :

Since C0 is given, CM can be solved from

C0 ¼ a0CM þ b0. Once CM is obtained, Ck can be deter-

mined based on Eq. (45). Hence, CðtÞ ¼
PM

i¼0 Citi:
Case 2. If sT < sq, then

aM�k ¼
1

b
MðM � 1Þ � � � ðM � k þ 1Þ ðsq � sTÞk�1

ðk � 1Þ!

þ 1
b

Xk�1
i¼1

ðM � k þ 1Þ � � � ðM � k þ iÞ

� ðsq � sTÞi�1

ði� 1Þ! aM�kþi; ð46Þ

bM�k ¼
1

b

Xk�1
i¼1

ðM � k þ 1Þ � � � ðM � k þ iÞ

� ðsq � sTÞi�1

ði� 1Þ! aM�kþi �
UðM�2Þðsq � sTÞ

bðM � kÞ! ð47Þ

and

CM�k ¼ aM�kCM þ bM�k ; C0 ¼ Cð0Þ;
k ¼ 1; . . . ;M :

ð48Þ

Again, since C0 is given, CM can be solved from

C0 ¼ a0CM þ b0. Once CM is obtained, Ck can be deter-

mined based on Eq. (48). Hence, CðtÞ ¼
PM

i¼0 Citi.
Finally, the numerical solution for Eqs. (33)–(35) can

be written as follows:

T ðx; tÞ ¼
X1
n¼1

CnðtÞ sin
npx
l

; ð49Þ

where

CnðtÞ ¼
XM
i¼0

Cn
i t

i: ð50Þ

3. Numerical examples

Two simple examples are given to test our method.

The first example is a simple 1D heat conduction

problem as follows:

oT ðx; t þ sqÞ
ot

¼ o2T ðx; t þ sTÞ
ox2

; ð51Þ

T ðx; 0Þ ¼ sin px ð52Þ

and

T ð0; tÞ ¼ T ð1; tÞ ¼ 0: ð53Þ

It can be seen that the exact solution for the no time lag

case is T ðx; tÞ ¼ e�p2t sin px. The numerical solution can
be written as follows:

T ðx; tÞ ¼
X1
n¼1

CnðtÞ sin npx;

where

CnðtÞ ¼
XM
i¼0

Cn
i t

i

and Cn
i is computed based on Eqs. (23) or (28). From

Eq. (14), we can see that C1ð0Þ ¼ 1 and Cnð0Þ ¼ 0,
n ¼ 2; 3; . . . Thus, from Eqs. (23) and (28) Cn

i ¼ 0,
n ¼ 2; 3; . . . ; and hence the numerical solution can be
expressed as follows: T ðx; tÞ ¼ C1ðtÞ sin px.
Figs. 1–3 give the solutions for various values of sq

and sT when M ¼ 50 and t ¼ 0:01; 0:1, and 0:5; re-
spectively. From these figures, it is seen that for sq ¼ sT
the exact solution and the approximate solution are the

same. For sq > sT, the temperature gradient precedes
the heat flux vector, implying that the temperature

gradient is the cause while the heat flux vector is the

effect. On the other hand, for sq < sT, the heat flux
vector precedes the temperature gradient, implying that

the heat flux vector is the cause while the temperature

gradient is the effect. It can be seen from Figs. 1–3 that

the temperature level for sq > sT is higher than that for
sq < sT. Also, the temperature level for sq > sT goes
down as sq increases while the temperature level for
sq < sT goes up as sT increases. Both levels become close
to each other as sq and sT become large. Furthermore,

Fig. 1. Temperature profiles for various values of sq and sT
when t ¼ 0:01 in the first example. In the figure, Tt stands for sT
and Tq for sq.
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the temperature levels for both cases are higher than that

predicted by the traditional heat conduction equation.

Fig. 4 shows a plot of the coefficient C1i in Eq. (30) for
sq ¼ 1 and sT ¼ 2 when M ¼ 50; 100; and 200, which
was computed using Eqs. (22)–(24). Fig. 5 shows the

coefficient C1i in Eq. (30) for sq ¼ 2 and sT ¼ 1 when
M ¼ 50; 100; and 200, which was computed using Eqs.
(27) and (28). The coefficients obtained based on dif-

ferent M values are not significantly different in both

figures. The results show that the coefficient C1i is con-
vergent.

The second example is a 1D heat conduction equa-

tion with a heat source and initial and boundary con-

ditions as follows:

oT ðx; t þ sqÞ
ot

¼ o2T ðx; t þ sTÞ
ox2

þ e�ðtþsqÞ sinpx; ð54Þ

T ðx; 0Þ ¼ 0 ð55Þ

and

T ð0; tÞ ¼ T ð1; tÞ ¼ 0: ð56Þ

It can be seen that the exact solution for the no time lag

case is

T ðx; tÞ ¼ 1

p2 � 1 ðe
�t � e�p2tÞ sin px:

We assume that the numerical solution can be written as

follows:

T ðx; tÞ ¼
X1
n¼1

CnðtÞ sin npx;

where

Fig. 4. Coefficient Ci for sq ¼ 1 and sT ¼ 2 when M ¼ 50;
100; 200 in the first example.

Fig. 5. Coefficient Ci for sq ¼ 2 and sT ¼ 1 when M ¼ 50;
100; 200 in the first example.

Fig. 2. Temperature profiles for various values of sq and sT
when t ¼ 0:1 in the first example. In the figure, Tt stands for sT
and Tq for sq.

Fig. 3. Temperature profiles for various values of sq and sT
when t ¼ 0:5 in the first example. In the figure, Tt stands for sT
and Tq for sq.
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CnðtÞ ¼
XM
i¼0

Cn
i t

i

and Cn
i is computed based on Eqs. (45) or (48). From

Eq. (39), it is seen that Cnð0Þ ¼ 0; n ¼ 1; 2; 3; . . . Ex-
panding Sðx; tÞ in Eq. (37) in a Fourier sine series,
we obtain the coefficients as follows: U1ðtÞ ¼
2
R 1
0
Sðx; tÞ sinpxdx ¼ e�t; and UnðtÞ ¼ 0, n ¼ 2; 3; . . .

Hence, the numerical solution can be expressed as fol-

lows: T ðx; tÞ ¼ C1ðtÞ sin px.
Figs. 6–8 give the solutions for various values of sq

and sT when M ¼ 50 and t ¼ 0:05; 0:2, and 0:5, re-
spectively. From these figures, it is seen that for

sq ¼ sT ¼ 0 or sq ¼ sT ¼ 1 the exact solution and the
numerical solution are the same. Further, the tem-

perature level for sq < sT is higher than that for

sq > sT.
Fig. 9 shows the coefficient C1i in Eq. (50) for sq ¼ 1

and sT ¼ 2 when M ¼ 50; 100; and 150, respectively.
The coefficient was computed using Eq. (45). Fig. 10

shows the coefficient C1i in Eq. (50) for sq ¼ 2 and sT ¼ 1
when M ¼ 50; 100; and 150, respectively, which was

Fig. 6. Temperature profiles for various values of sq and sT
when t ¼ 0:05 in the second example. In the figure, Tt stands for
sT and Tq for sq.

Fig. 7. Temperature profiles for various values of sq and sT
when t ¼ 0:2 in the second example. In the figure, Tt stands for
sT and Tq for sq.

Fig. 8. Temperature profiles for various values of sq and sT
when t ¼ 0:5 in the second example. In the figure, Tt stands for
sT and Tq for sq.

Fig. 9. Coefficient Ci for sq ¼ 1 and sT ¼ 2 when M ¼ 50; 100;
and 150 in the second example.

Fig. 10. Coefficient Ci for sq ¼ 2 and sT ¼ 1 when

M ¼ 50; 100; and 150 in the second example.
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computed using Eq. (48). The coefficients obtained

based on differentM values are not significantly different

in both figures. Again, the results show that the coeffi-

cient C1i is convergent.

4. Conclusion

In this study, we develop a new numerical method for

solving 1D dual-phase-lagging heat conduction equa-

tions. The method is illustrated with two simple exam-

ples. The method can be readily generalized to the

multidimensional case because one can employ the

method of separation of variables to separate variables

between x; y; z and t. We will further study the appli-

cation of this method to solving practical problems.
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