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Abstract

In this study, we develop an approximate analytic method for solving 1D dual-phase-lagging heat conduction
equations, which are derived based on the original dual-phase-lagging model without the first-order Taylor series
approximation. The approximate analytic solution is obtained by employing the method of separation of variables. The
coefficients of the series solution are then approximated by polynomials. The numerical method is illustrated with two
simple examples. © 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Heat transport through thin films is of vital impor-
tance in microtechnology applications [1,2]. Thin films
of metals, of dielectrics such as SiO, or Si semiconduc-
tors are important components of microelectronic de-
vices. Reducing the device size to microscale enhances
the switching speed of the device. Size reduction, how-
ever, increases the rate of heat generation which leads to
a high thermal load on the microdevice. Heat transfer at
the microscale is also important for the processing of
materials with a pulsed-laser [3,4]. Examples in metal
processing are laser micromachining, laser patterning,
laser processing of diamond films from carbon ion im-
planted copper substrates, and laser surface hardening.
Hence, studying the thermal behavior of thin films is
essential for predicting the performance of a microelec-
tronic device or for obtaining the desired microstructure
[2]. A dual-phase-lagging model has been used for
studying the lagging response in conductive heat transfer
at the microscale. The lagging response describes the
heat flux vector and the temperature gradient occurring
at different instants of time in the heat transfer process.

*Corresponding author. Tel.: +1-318-257-3301; fax: +1-318-
257-2562.
E-mail address: dai@coes.latech.edu (W. Dai).

The original dual-phase-lagging heat transport equa-
tions are expressed as [5]:

~ or
_v'q+Q:pCp§7 (1)

4(x,y,2,t+1q) = =kVT(x,p,2,t + 1), )

where ¢ = (q1, ¢, ¢3) is heat flux , T is temperature, k is
conductivity, C, is specific heat, p is density, O is a heat
source, tq and 7 are positive constants, which are the
time lags of the heat flux and temperature gradient, re-
spectively. In the classical theory of diffusion, the heat
flux vector (§) and the temperature gradient (V7T) across
a material volume are assumed to occur at the same
instant of time. They satisfy the Fourier’s law of heat
conduction

q(xvyvzat) :*kVT(X,y,Z,t). (3)

As Tzou [5] pointed out, the thermal lagging describes
the fast-transient effect of thermal inertia. The finite time
required for the energy exchange/thermal activation in
microscale resides in the phase lag of the temperature
gradient. It also describes the microstructural inter-
action effect in space in terms of the resulting delayed
response in time.Using Taylor series expansion, the first-
order approximation of Eq. (2) gives [5]

0 0

zj+rqa—‘f: —k{VTJr‘CTa—t[VT]]. (4)
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Nomenclature

a constant = (k/pC,)

C; coefficient in Taylor series of
I'(r)

Co specific heat

k conductivity

/ length of the considered
interval

M, n integers

(0] heat source

d=1(q1,92,93) heat flux

T temperature

t time
X, 9,z Cartesian coordinates

Greek symbols

B constant = (—al,)

r coefficient in Fourier series of
T(x,1)

on constant = ((nm/1)%)

@ coefficient in Fourier series of the
source term S(x, ¢)

o density

Tq time lag of heat flux

1T time lag of temperature gradient

Analytic and numerical methods for solving the above
coupled Eqgs. (1) and (4) have been widely studied [5-21].
Among these, Tzou and Ozisik [5,6] considered Eqgs. (1)
and (4) in 1D and eliminated the heat flux 4 to obtain a
heat transport equation as follows:

or o’T 0T T
At P T ae TP S ®)
where A= (pCp)/k, B=r1r, D= (14pC,)/k, and
S = 1/k(Q + 14(00)/(d¢)). They studied the lagging be-
havior by solving the above heat transport Eq. (5)
without body heating in a semiinfinite interval, [0, +00).
The solution was obtained by using the Laplace trans-
form method and the Riemann-sum approximation for
the inversion [8]. Wang et al. [9,10] developed methods
of measuring the phase lags of the heat flux and the
temperature gradient and obtained analytical solutions
for 1D, 2D and 3D heat conduction domains under es-
sentially arbitrary initial and boundary conditions. The
solution structure theorems were also developed for
both mixed and Cauchy problems of dual-phase-lagging
heat conduction equations. Tang and Araki [12] derived
the analytic solution in finite rigid slabs by using the
Green’s function method and a finite integral transform
technique. Lin et al. [13] obtained the analytic solution
using the Fourier series. Al-Nimr and Arpaci [14] pro-
posed a new approach, based on the physical decoupling
of the hyperbolic two-step model, to describe the ther-
mal behavior of a thin metal film exposed to picoseconds
thermal pulses. Chen and Beraun [15] employed the
corrective smoothed particle method to obtain a nu-
merical solution of ultrashort laser pulse interactions
with metal films. Dai and Nassar [16] developed a two-
level finite difference scheme of the Crank—Nicholson
type by introducing an intermediate function for solving
Eq. (5) in a finite interval. It is shown by the discrete
energy method that the scheme is unconditionally stable.
The scheme has been generalized to a 3D rectangular
thin film case where the thickness is at the sub-micro-
scale [17]. Further, Dai and Nassar [18,19] developed

high-order compact finite difference schemes for solving
Egs. (5) and (4) in a 3D thin film, respectively. Dai and
Nassar also developed several numerical methods for
solving the coupled Egs. (1) and (4) in double-layered
thin films [20,21].

Since Eq. (4) is only a first-order Taylor series ap-
proximation of Eq. (2), it may not be a good represen-
tation of the original dual-phase-lagging equation, Eq.
(2). Further, the higher-order Taylor series approxima-
tion of Eq. (2) may result in higher-order derivatives,
which may be difficult to solve both analytically and
numerically. Therefore, it is useful to study thermal
behavior based on the original coupled Egs. (1) and (2).
Through this, one can study the high-order effect in 74
and 7. In this paper, we will develop an approximate
analytic method for solving 1D dual-phase-lagging heat
transport equations.

2. Approximate analytic method

We first consider the coupled dual-phase-lagging heat
conduction equations (Egs. (1) and (2)) without the heat
source in 1D

0q or

o P (6)
and

oT
qx,t+14) = fka(x,ﬂr 7). (7)

Eliminating ¢, we obtain a 1D dual-phase-lagging heat
conduction equation as follows:
T (x,t + 1q) PT(x,t+ 1)
= 8
o T ®)

where a = k/(pC,). The initial and boundary conditions
are assumed to be

T(x,0) = o(x) ©)
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and
T(0,¢)=T(l,t)=0. (10)

Assume that the solution of the above problem exists
and is smooth. To solve the above problem, we first
employ the method of separation of variables. Letting
T(x,t) = I'(t)X(x) and substituting it into Eq. (8), we
obtain

I'(t+ 1) X (x) = al (t + 1) X" (x).

Separating variables x and ¢, we have

I'tt1)  X"(x)

al(t+t1) X(x) 4

where / is a constant. Thus, the problem, Egs. (8)—(10),
can be separated into solving two different ordinary
equations as follows:

X'"(x)+X(x)=0, X(0)=X(/)=0 (11)
and
I'(t+1q) = —all'(t + r). (12)
It is readily seen that the solution of Eq. (11) is

. nmXx , nm 2
X,(x) = sin" An_(T) L n=1,23,... (13

Hence, Eq. (12) becomes
I (t+1q) = —ak,T,(t + 1),

! (14)
r,(0) :%/ o()sin™ dx, n=1,2,...
I ) /
Once Eq. (14) is solved, the analytic solution of the
problem, Egs. (8)-(10), can be written as follows:

nmx

T(x,t) =Y T,(t) sin == (15)

The remaining question is how to find the solution of
Eq. (14). It is noted that Eq. (14) is difficult to solve
analytically, because 7, and tr are different values. To
overcome this difficulty, we develop an approximate
analytic method, in which I',(¢) is approximated by a
polynomial. Once I',(¢) is obtained, then the solution
T(x,t) is obtained from Eq. (15). To this end, we first
rewrite Eq. (14) without the index » for convenience

I'(t+1q) = pr(t+ tr), (16)

where f is a constant. Let

M
ri=> ct, (17)
i=0

where M could be a large integer and Cy = I'(0). Sub-
stituting Eq. (17) into Eq. (16) gives
M

Zcii(t+‘cq)i_l =B> Clt+1r). (18)

i=0

Case 1. If 11 >

— /}Z Ci(tr — ‘z:q)[.
i—0

Differentiating Eq. (18) with respect to ¢ and letting
t = —1q give

M
D Gili = 1)(t+1q)"
i=2

and

74, We let t = —74 in Eq. (18) and obtain

i i(t+ )" (19)
i=1

M
2'C2 = BZ Cii(TT
i=1

Continuously, differentiating Eq. (19) with respect to ¢
and letting t = —7 give

ZCI

=BY_Cili=)(t+ ) (20)

- 2)(t+7g)"

and
M .
31Cy = B Gili — D) (rr — 7).
=2
In general, we have

kIC = Z Ci(i—1)---(i—k+2)(r q)l;kﬂ, 1)
i=k—1

k=1,....M.

We now solve the coefficients Cy, k = 1,..., M, from Eq.
(21). Letting k = M, we obtain from Eq. (21)

M'CM = ﬁ[M'(‘ET — ‘Eq)CM + (M — 1)!CM,]].
Hence,

ay-1 _ B
Cy = M Cy-1,  ay- —71 —ﬁ(TT _Tq)~

Letting k = M — 1, we obtain

(M = D)ICy—y
—ﬂZCll—l (=M +3)(rr —1g) M
ﬁ{%(ﬁ ) Cu+ (M — D (tr — 79)Crri
(- €

+ (M = 1)(tr — 1¢)Crr1 + (M —2)!Cyy 5|
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Hence,
ay—
Cuunr = 377 Cura,
Ay = ﬁ
1 7B(TT7‘CQ) ﬁ o (TT*Tq)z

Again, letting k = M — 2, we obtain

u4fzﬂcM4:43§5cy071y~0444+4xﬁ4w@”M“
i=M-3

(M-

1)!
T)(TT 7q) Curt

|l w)cut

+ (M*Z)'(‘CT - Tq)CM,Z + (M — 3)!CM73:| .

Replacing Cy, by Cy,_; and then Cy,_; by Cy,_, based on
the previous equations, we obtain

Ay -3

CM—Z = M— 2CM737
where
ay -3
_ B
1= Bler —1q) — %(TT - Tq)z - ﬂaM*lﬂM*Z (tr — Tq)3
In general, we have
Ay = 'B
1 - ﬂ(TT - Tq) - ﬁZf:z TIS(TT - Tq)l H,,;l| Ay —f+j
k=2,....M
(22)
and
am—k
Cyj1=————Cy, Co=T(0),
Mokt = ey G 0 (0) (23)
k=M,..., 1,
where
f (24)

T R

Case 2. If 1t < 14, we let t = —77 in Eq. (18) and obtain

ch 1 = BC,.

Differentiating Eq. (18) with respect to ¢ and letting
t = —1r give

M
> Gili - 1)(
i=2

and

)+ 1q) 7[)’ZC1 +1r)” (25)

M
> Gili — 1)(tg — )7 = pCi.
i=2

Again, differentiating Eq. (25) with respect to ¢ and
letting t = —tr give

M M

ZCii(i— D(i—2)(t+1,)"° :BZCii(i— D(t+77) "
and

M

D G —1)(i - 2)(t+1q)" = 21BC.
-3
In general, we have

PEIC, = Gi(i—1) —k)(tg — o)
lzk;I (26)

k=0,....M—1.

We then solve the coefficients C;, k = 1,..., M, from Eq.
(26). Letting k = M — 1, we obtain from Eq. (26)

BM — D)ICyy_y = MICy,.

Hence,

apm—1

M

Cu = Cy-1, ay—1 =p.

Letting k = M — 2, we obtain

PM—=2)ICyr= Z Ci(i—1)---(i—M+2)(zq _gp) M

i=M—1
:M!(Tq —‘CT)CM + (M— 1)!CM,1

= (M* 1)!aM_1(‘L'q 7TT)CM—1 + (M* 1)'CM—I

__ B
L +ay_i(tq — 1)

Again, letting k = M — 3, we obtain

PM—=3)ICy_3= XM: Cii(i— 1)+ (i — M +3)(1q __L_T)i—M+2

i=M-2
M!

:T(Tq 1) > Co+ (M — 1)) (14 — 71) Cay_
+ (M =2)ICys.

Replacing C), by Cy,_; and then C),_; by Cy,_, based on
the previous equations, we obtain
ay -3

Cyr= W _‘2 Cy-s,

where

p

ay-3 = .
1+ aya(tq — Tr) + 2402 (14 — 71)°
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In general, we obtain

B

ay—k = - = )

U+ 300 i (g = o) Tl @i (27)
k=1,...,.M
and

ay—k

Cysy1 =———Cyx, Co=T(0),
M—k+1 M—k+1 M—k 0 () (28)
k=M,... 1

Once C; is obtained, I'(r) = ZZO C;t. Finally, one
can obtain I',(¢) for each n based on the above method
(ie., I,(¢) = Z?i o C't"), and hence the approximate an-
alytic solution for Egs. (8)—(10) can be written as fol-
lows:

. nmx
T(x,1) = ; I(0) sin=, (29)
where
M .
n=>y Ct. (30)
i=0

It should be pointed out that the above approximate
solution satisfies exactly the following initial conditions:

k
T(x,0) = o(x), %:0 (k=M+1,M+2,..)
and

*T(x,0) F T (x, 11 — 1q)
if v > 14, R B ] q

(k=1,2,....M)

FT(x,or —19)  ,0'T(x,0)
otk B Otk

(k=1,2,...,M).

if T < 1q,

Further, the convergence in the series, Eq. (29), needs to
be further studied mathematically.

We now generalize the above idea to develop an
approximate analytic solution for the coupled dual-
phase-lagging heat conduction equations (Egs. (1) and
(2)) in 1D, where the heat source Q(x, ¢) is included

 Og(x,t) @T(x7 1)
04 ot = 9, T a1
and
qx,t+1q) = —ka—T (x,t 4+ 7). (32)

Ox

Assume that p, C,,, and k are constants. We eliminate ¢
in Egs. (31) and (32) to obtain a 1D dual-phase-lagging
heat conduction equation with a heat source as follows:

OT(x,t+1q) aazT(x, t+17)
ot - Ox?

+S(x, 4+ 19), (33)

where a =k/(pC,) and S(x,t) =1/(pCpy)O(x,1). The
initial and boundary conditions are assumed to be

T(x,0) = o(x) (34)
and
7(0,1) = T(1,1) = 0. (35)

We assume that the solution of the above problem exists
and is smooth. To solve the above problem, we first
employ the method of separation of variables and let

Z I,( sm—nx (36)
and
S(x,f) = i @, (t) sin@. (37)

Substituting Egs. (36) and (37) into Eq. (33) gives
I(t+1q) = —al,Tu(t + 1) + Pu(t + 1), (38)

where 2, = (nm/1)* and

1
F,I(O):%/O <p(x)sin$dx, n=102,... (39)

To find an approximate analytic solution, we first re-
write Eq. (38) without the index n for convenience

I'(t41q) = Bt + 1) + (¢ + 14), (40)

where f§ = —al,. Let
M

r@=> ct, (41)

where M could be a large integer and Cy = I'(0). Sub-

stituting Eq. (41) into Eq. (40) gives

ZCll—i-Tq

Using a similar argument as described in the previous
problem, we obtain two results as follows.
Case 1. If Tt > 14, then

7/520 t+r) + Pt 41,).  (42)

i=0

aApM—k+1

ay =M —k+1) 5 —MM—1)---
(tr _Tq)k
X (M —k+ 1)T
k—1 A ( _ )[
_;(M_IH— ) (M =kt Day i = i!rq ’
(43)
_ by PMH(0)
by =M—k+1) 5 _ﬂ(Mfk)!
k-1 . (or — 1)
M—-k+1)-- (M_k+,)bM7k+i%
li (44)
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and

Cy—k = ay—iCu + by, Co=T(0),

45
k=2,...,M, (45)
where
L= Bl — 1) _ 9" ()
ay-1 =M I s by = B(M — 1)!~

Since C, 1is given, Cy can be solved from
Cy = agCy + by. Once Cy, is obtained, C, can be deter-

mined based on Eq. (45). Hence, I'(¢) = 3.V, Cit'.
Case 2. If 11 < 14, then
_ 1 (tq — ""T)ki1
k-
+EZM k41)--- (M —k+1i)
=1
1
-1
%ﬂ/mkm (46)
=
bek:E M—k+1) (M —k+1i)
i=1
(tq —71)" M (14 — 1)
4
T M T TR — k) (47)
and
CM,/( = aM,kCM + bM—Im C() = F(0)7 (48)

k=1,....M

Again, since C, is given, Cy can be solved from
Cy = agCy + by. Once Cy, is obtained, C, can be deter-
mined based on Eq. (48). Hence, I'(t) = >V Cit'.

Finally, the numerical solution for Egs. (33)-(35) can
be written as follows:

- . nmX
T(x,t) = ; Lu()sin=, (49)
where
M
r,n=>y cr. (50)
i=0

3. Numerical examples

Two simple examples are given to test our method.
The first example is a simple 1D heat conduction
problem as follows:

OT(x,t+1q)  O*T(x,t+ 1) (51)
ot N ox? '

T(x,0) = sin x (52)
and
7(0,¢)=T(1,7) = 0. (53)

It can be seen that the exact solution for the no time lag
case is T(x,7) = e ™'sin mx. The numerical solution can
be written as follows:

00

T(x,t) = Z I, (¢) sin nmx,

n=1

where

M
n=>y Cr
i=0

and C! is computed based on Eqs. (23) or (28). From
Eq. (14), we can see that I'1(0) =1 and I,(0)=0,
n=2,3,... Thus, from Egs. (23) and (28) C! =0,
n=2,3,..., and hence the numerical solution can be
expressed as follows: T'(x, ) = I';(¢) sin mx.

Figs. 1-3 give the solutions for various values of 14
and tr when M =50 and ¢=0.01, 0.1, and 0.5, re-
spectively. From these figures, it is seen that for 74 = 77
the exact solution and the approximate solution are the
same. For 74 > 7r, the temperature gradient precedes
the heat flux vector, implying that the temperature
gradient is the cause while the heat flux vector is the
effect. On the other hand, for 7y < r, the heat flux
vector precedes the temperature gradient, implying that
the heat flux vector is the cause while the temperature
gradient is the effect. It can be seen from Figs. 1-3 that
the temperature level for 7, > 77 is higher than that for
7q < 71. Also, the temperature level for tq > 71 goes
down as 74 increases while the temperature level for
Tq < Tt goes up as tr increases. Both levels become close
to each other as 7y and 71 become large. Furthermore,

Te=100 and Tq=1

o8 v v v v v by L 1 Y

0 0.25 0.5 0.75 1
X

Fig. 1. Temperature profiles for various values of 74 and tr
when ¢ = 0.01 in the first example. In the figure, 77 stands for =
and 7 for 4.
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O Tt=100 2nd Tq=1
A Tedand o=l
o

Exact with Tt=0 and Tq=0

13 T o Tt=1 and Tq=1
-7 e ———— T:—l:.".d'r::z
12 7 N\, Te=1 and Tq=4
11 / N — — TrlamdTg100
1 | ..aﬂ”mn"nnun' N,
09 /e anesssan, Do\
oA 44,0
= 0

coeon b e b by o T
0 025 05 0.75 1

Fig. 2. Temperature profiles for various values of 74 and 1
when # = 0.1 in the first example. In the figure, 77 stands for o1
and 7 for 4.

3 o Te=100 and Tq=1
A Ti=4and Tq=1
O T=2and Tq=1
- Exact with Tt=0 and Tq=0
_ O T=landTg=1
25— —--—- T=land Tq=2
r e Te=1 and Tq=4
7 - ~. — — Te=1and Tg=100
- s N,
2= / AN
r / N
\
= 15| 4 N
r / \
F ! N
1= ’ d - \
n s ﬂ.ﬁuﬁn‘nnﬁnn‘abn.% .
- / naudﬁu g N\
C S AAABBABAAAAA o, k
s /@ dZAAA“AAA AAAAAAAADhDE =N\
n a8 00000000000000000G Bap O\
000 20000055885
0 500605006050606506666666066666b06606 .%
1

0.25 05 0.75
X

Fig. 3. Temperature profiles for various values of 7; and
when ¢ = 0.5 in the first example. In the figure, 77 stands for or
and T, for 4.

the temperature levels for both cases are higher than that
predicted by the traditional heat conduction equation.

Fig. 4 shows a plot of the coefficient C! in Eq. (30) for
7q =1 and 7t =2 when M = 50, 100, and 200, which
was computed using Eqs. (22)-(24). Fig. 5 shows the
coefficient C! in Eq. (30) for ty =2 and 7y = 1 when
M =50, 100, and 200, which was computed using Eqs.
(27) and (28). The coefficients obtained based on dif-
ferent M values are not significantly different in both
figures. The results show that the coefficient C! is con-
vergent.

The second example is a 1D heat conduction equa-
tion with a heat source and initial and boundary con-
ditions as follows:

0T (x,1+1q)  O*T(x, 14 1)
ot N Ox?
T(x,0)=0 (55)

+ e (%) sin ux, (54)

and

lTillIlIll!‘

0.5

Coefficient Ci

N

&
CITTTT]TTIT[TTTT

Fig. 4. Coeflicient C; for 74 =1 and 7t =2 when M = 50,
100, 200 in the first example.

o
IIH|I|H|HII|HFI_‘

>

Coefficient Ci

L

I Y

n

i TTTE T T IR T TIT [ TITT 777

&

Fig. 5. Coeflicient C; for 1q =2 and 7r =1 when M = 50,
100, 200 in the first example.

T(0,¢)=T(1,¢) = 0. (56)

It can be seen that the exact solution for the no time lag
case is
1

] (e —e ™) sin mx.
2 —

T(x,t) =

We assume that the numerical solution can be written as
follows:

00

T(x,) =Y I,(t)sin nmx,

n=1

where
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g
T
M=
Q

i=0

and C! is computed based on Eqgs. (45) or (48). From
Eq. (39), it is seen that I,(0) =0, n=1,2,3,... Ex-
panding S(x,7) in Eq. (37) in a Fourier sine series,
we obtain the coefficients as follows: @,(¢) =
2f01 S(x,f)sintxdx =¢, and @,(1)=0, n=2.3,...
Hence, the numerical solution can be expressed as fol-
lows: T(x,t) = I'|(¢) sin mx.

Figs. 6-8 give the solutions for various values of 74
and tr when M =50 and ¢ =0.05, 0.2, and 0.5, re-
spectively. From these figures, it is seen that for
Tq =1r =0 or 1q = 7r = | the exact solution and the
numerical solution are the same. Further, the tem-
perature level for 7y < 7r is higher than that for
Tq > TT.

Fig. 9 shows the coefficient C! in Eq. (50) for 7, = 1
and tr =2 when M =50, 100, and 150, respectively.
The coefficient was computed using Eq. (45). Fig. 10
shows the coefficient C! in Eq. (50) for 7, = 2 and 1 = 1
when M = 50, 100, and 150, respectively, which was

—-— T6adTe=l
Te-d and Ta=1

— — Te2ad Tt

Exact with Te=0 and Tq=0, and Tr-1 and Tq-1

o TrlmdTg2

A TeladTe3

O TeladTgs

T

0.03

TT 1T

= 002

T

TT T T

Fig. 6. Temperature profiles for various values of 74 and 1
when ¢ = 0.05 in the second example. In the figure, 77 stands for
7r and T for 7.

XX — - — Te6adTe=l

-
Exact with Tr=0 and Tq=0, and Te=1 and Tg=1
=1 and Tq=2

Teel and Tq=3
O TeladTes

TITT T T[T T T T 777

o

3

S
T

T

Fig. 7. Temperature profiles for various values of 74 and tr
when ¢ = 0.2 in the second example. In the figure, 7t stands for
7r and T for 7q.
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when ¢ = 0.5 in the second example. In the figure, 77 stands for
71 and T for 4.
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Fig. 10. Coefficient C; for tq=2 and tr=1 when
M =50, 100, and 150 in the second example.
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computed using Eq. (48). The coefficients obtained
based on different M values are not significantly different
in both figures. Again, the results show that the coeffi-
cient C! is convergent.

4. Conclusion

In this study, we develop a new numerical method for
solving 1D dual-phase-lagging heat conduction equa-
tions. The method is illustrated with two simple exam-
ples. The method can be readily generalized to the
multidimensional case because one can employ the
method of separation of variables to separate variables
between x, y, z and . We will further study the appli-
cation of this method to solving practical problems.
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